Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506263

RESUMO

The spotted flycatcher (Muscicapa striata) forms with the Mediterranean flycatcher (Muscicapa tyrrhenica) a newly recognized species pair of trans-Saharan migratory passerines. These flycatchers present a nested peripatric distribution, a pattern especially unusual among high dispersal species that questions the eco-evolutionary factors involved during the speciation process. Here, we present a genome assembly for M. striata assembled using a combination of Nanopore and Illumina sequences. The final assembly is 1.08 Gb long and consists of 4,779 contigs with an N50 of 3.2 Mb. The completeness of our M. striata genome assembly is supported by the number of BUSCO (95%) and ultraconserved element (UCE) (4889/5041; 97.0%) loci retrieved. This assembly showed high synteny with the Ficedula albicollis reference genome, the closest species for which a chromosome-scale reference genome is available. Several inversions were identified and will need to be investigated at the family level.


Assuntos
Passeriformes , Aves Canoras , Animais , Filogenia , Genoma , Passeriformes/genética , Aves Canoras/genética , Sintenia , Cromossomos
2.
PLoS Genet ; 19(4): e1010724, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068079

RESUMO

The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin.


Assuntos
Catecol O-Metiltransferase , Galinhas , Camundongos , Animais , Galinhas/genética , Catecol O-Metiltransferase/genética , Camundongos Knockout , Melaninas/metabolismo , Pigmentação/genética , Mutação da Fase de Leitura
3.
PLoS One ; 17(8): e0270012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976909

RESUMO

Managing Salmonella enterica Enteritidis (SE) carriage in chicken is necessary to ensure human food safety and enhance the economic, social and environmental sustainability of chicken breeding. Salmonella can contaminate poultry products, causing human foodborne disease and economic losses for farmers. Both genetic selection for a decreased carriage and gut microbiota modulation strategies could reduce Salmonella propagation in farms. Two-hundred and twenty animals from the White Leghorn inbred lines N and 61 were raised together on floor, infected by SE at 7 days of age, transferred into isolators to prevent oro-fecal recontamination and euthanized at 12 days post-infection. Caecal content DNA was used to measure individual Salmonella counts (ISC) by droplet digital PCR. A RNA sequencing approach was used to measure gene expression levels in caecal tonsils after infection of 48 chicks with low or high ISC. The analysis between lines identified 7516 differentially expressed genes (DEGs) corresponding to 62 enriched Gene Ontology (GO) Biological Processes (BP) terms. A comparison between low and high carriers allowed us to identify 97 DEGs and 23 enriched GO BP terms within line 61, and 1034 DEGs and 288 enriched GO BP terms within line N. Among these genes, we identified several candidate genes based on their putative functions, including FUT2 or MUC4, which could be involved in the control of SE infection, maybe through interactions with commensal bacteria. Altogether, we were able to identify several genes and pathways associated with differences in SE carriage level. These results are discussed in relation to individual caecal microbiota compositions, obtained for the same animals in a previous study, which may interact with host gene expression levels for the control of the caecal SE load.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Animais , Galinhas/genética , Galinhas/microbiologia , Humanos , Tonsila Palatina , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/genética , Transcriptoma
4.
Sci Rep ; 12(1): 9995, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705568

RESUMO

Interactions between the gut microbiota and the immune system may be involved in vaccine and infection responses. In the present study, we studied the interactions between caecal microbiota composition and parameters describing the immune response in six experimental inbred chicken lines harboring different MHC haplotypes. Animals were challenge-infected with the infectious bronchitis virus (IBV), and half of them were previously vaccinated against this pathogen. We explored to what extent the gut microbiota composition and the genetic line could be related to the immune response, evaluated through flow cytometry. To do so, we characterized the caecal bacterial communities with a 16S rRNA gene amplicon sequencing approach performed one week after the IBV infectious challenge. We observed significant effects of both the vaccination and the genetic line on the microbiota after the challenge infection with IBV, with a lower bacterial richness in vaccinated chickens. We also observed dissimilar caecal community profiles among the different lines, and between the vaccinated and non-vaccinated animals. The effect of vaccination was similar in all the lines, with a reduced abundance of OTU from the Ruminococcacea UCG-014 and Faecalibacterium genera, and an increased abundance of OTU from the Eisenbergiella genus. The main association between the caecal microbiota and the immune phenotypes involved TCRϒδ expression on TCRϒδ+ T cells. This phenotype was negatively associated with OTU from the Escherichia-Shigella genus that were also less abundant in the lines with the highest responses to the vaccine. We proved that the caecal microbiota composition is associated with the IBV vaccine response level in inbred chicken lines, and that the TCRϒδ+ T cells (judged by TCRϒδ expression) may be an important component involved in this interaction, especially with bacteria from the Escherichia-Shigella genus. We hypothesized that bacteria from the Escherichia-Shigella genus increased the systemic level of bacterial lipid antigens, which subsequently mitigated poultry γδ T cells.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Microbiota , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/prevenção & controle , RNA Ribossômico 16S/genética , Receptores de Antígenos de Linfócitos T , Vacinação/veterinária
5.
Genet Sel Evol ; 54(1): 7, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093028

RESUMO

BACKGROUND: Salmonella Enteritidis (SE) is one of the major causes of human foodborne intoxication resulting from consumption of contaminated poultry products. Genetic selection of animals that are more resistant to Salmonella carriage and modulation of the gut microbiota are two promising ways to decrease individual Salmonella carriage. The aims of this study were to identify the main genetic and microbial factors that control the level of Salmonella carriage in chickens (Gallus gallus) under controlled experimental conditions. Two-hundred and forty animals from the White Leghorn inbred lines N and 61 were infected by SE at 7 days of age. After infection, animals were kept in isolators to reduce recontamination of birds by Salmonella. Caecal contents were sampled at 12 days post-infection and used for DNA extraction. Microbiota DNA was used to measure individual counts of SE by digital PCR and to determine the bacterial taxonomic composition, using a 16S rRNA gene high-throughput sequencing approach. RESULTS: Our results confirmed that the N line is more resistant to Salmonella carriage than the 61 line, and that intra-line variability is higher for the 61 line. Furthermore, the 16S analysis showed strong significant differences in microbiota taxonomic composition between the two lines. Among the 617 operational taxonomic units (OTU) observed, more than 390 were differentially abundant between the two lines. Furthermore, within the 61 line, we found a difference in the microbiota taxonomic composition between the high and low Salmonella carriers, with 39 differentially abundant OTU. Using metagenome functional prediction based on 16S data, several metabolic pathways that are potentially associated to microbiota taxonomic differences (e.g. short chain fatty acids pathways) were identified between high and low carriers. CONCLUSIONS: Overall, our findings demonstrate that the caecal microbiota composition differs between genetic lines of chickens. This could be one of the reasons why the investigated lines differed in Salmonella carriage levels under experimental infection conditions.


Assuntos
Microbiota , Salmonelose Animal , Animais , Galinhas/genética , Humanos , RNA Ribossômico 16S/genética , Salmonelose Animal/genética , Salmonella enteritidis/genética
6.
Cytogenet Genome Res ; 162(5): 262-272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36689925

RESUMO

Mitotic chromosomes of butterflies, which look like dots or short filaments in most published data, are generally considered to lack localised centromeres and thus to be holokinetic. This particularity, observed in a number of other invertebrates, is associated with meiotic particularities known as "inverted meiosis," in which the first division is equational, i.e., centromere splitting-up and segregation of sister chromatids instead of homologous chromosomes. However, the accurate analysis of butterfly chromosomes is difficult because (1) their size is very small, equivalent to 2 bands of a mammalian metaphase chromosome, and (2) they lack satellite DNA/heterochromatin in putative centromere regions and therefore marked primary constrictions. Our improved conditions for basic chromosome preparations, here applied to 6 butterfly species belonging to families Nymphalidae and Pieridae challenges the holocentricity of their chromosomes: in spite of the absence of primary constrictions, sister chromatids are recurrently held together at definite positions during mitotic metaphase, which makes possible to establish karyotypes composed of acrocentric and submetacentric chromosomes. The total number of chromosomes per karyotype is roughly inversely proportional to that of non-acrocentric chromosomes, which suggests the occurrence of frequent robertsonian-like fusions or fissions during evolution. Furthermore, the behaviour and morphological changes of chromosomes along the various phases of meiosis do not seem to differ much from those of canonical meiosis. In particular, at metaphase II chromosomes clearly have 2 sister chromatids, which refutes that anaphase I was equational. Thus, we propose an alternative mechanism to holocentricity for explaining the large variations in chromosome numbers in butterflies: (1) in the ancestral karyotype, composed of about 62 mostly acrocentric chromosomes, the centromeres, devoid of centromeric heterochromatin/satellite DNA, were located at contact with telomeric heterochromatin; (2) the instability of telomeric heterochromatin largely contributed to drive the multiple rearrangements, principally chromosome fusions, which occurred during butterfly evolution.


Assuntos
Borboletas , Humanos , Animais , Borboletas/genética , Heterocromatina , DNA Satélite , Cromossomos , Centrômero , Meiose , Cromátides , Cariotipagem , Mamíferos/genética
7.
Front Genet ; 12: 655707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262593

RESUMO

In addition to their common usages to study gene expression, RNA-seq data accumulated over the last 10 years are a yet-unexploited resource of SNPs in numerous individuals from different populations. SNP detection by RNA-seq is particularly interesting for livestock species since whole genome sequencing is expensive and exome sequencing tools are unavailable. These SNPs detected in expressed regions can be used to characterize variants affecting protein functions, and to study cis-regulated genes by analyzing allele-specific expression (ASE) in the tissue of interest. However, gene expression can be highly variable, and filters for SNP detection using the popular GATK toolkit are not yet standardized, making SNP detection and genotype calling by RNA-seq a challenging endeavor. We compared SNP calling results using GATK suggested filters, on two chicken populations for which both RNA-seq and DNA-seq data were available for the same samples of the same tissue. We showed, in expressed regions, a RNA-seq precision of 91% (SNPs detected by RNA-seq and shared by DNA-seq) and we characterized the remaining 9% of SNPs. We then studied the genotype (GT) obtained by RNA-seq and the impact of two factors (GT call-rate and read number per GT) on the concordance of GT with DNA-seq; we proposed thresholds for them leading to a 95% concordance. Applying these thresholds to 767 multi-tissue RNA-seq of 382 birds of 11 chicken populations, we found 9.5 M SNPs in total, of which ∼550,000 SNPs per tissue and population with a reliable GT (call rate ≥ 50%) and among them, ∼340,000 with a MAF ≥ 10%. We showed that such RNA-seq data from one tissue can be used to (i) detect SNPs with a strong predicted impact on proteins, despite their scarcity in each population (16,307 SIFT deleterious missenses and 590 stop-gained), (ii) study, on a large scale, cis-regulations of gene expression, with ∼81% of protein-coding and 68% of long non-coding genes (TPM ≥ 1) that can be analyzed for ASE, and with ∼29% of them that were cis-regulated, and (iii) analyze population genetic using such SNPs located in expressed regions. This work shows that RNA-seq data can be used with good confidence to detect SNPs and associated GT within various populations and used them for different analyses as GTEx studies.

8.
Genet Sel Evol ; 53(1): 44, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957861

RESUMO

BACKGROUND: In all organisms, life-history traits are constrained by trade-offs, which may represent physiological limitations or be related to energy resource management. To detect trade-offs within a population, one promising approach is the use of artificial selection, because intensive selection on one trait can induce unplanned changes in others. In chickens, the breeding industry has achieved remarkable genetic progress in production and feed efficiency over the last 60 years. However, this may have been accomplished at the expense of other important biological functions, such as immunity. In the present study, we used three experimental lines of layer chicken-two that have been divergently selected for feed efficiency and one that has been selected for increased antibody response to inactivated Newcastle disease virus (ND3)-to explore the impact of improved feed efficiency on animals' immunocompetence and, vice versa, the impact of improved antibody response on animals' growth and feed efficiency. RESULTS: There were detectable differences between the low (R+) and high (R-) feed-efficiency lines with respect to vaccine-specific antibody responses and counts of monocytes, heterophils, and/or T cell population. The ND3 line presented reduced body weight and feed intake compared to the control line. ND3 chickens also demonstrated an improved antibody response against a set of commercial viral vaccines, but lower blood leucocyte counts. CONCLUSIONS: This study demonstrates the value of using experimental chicken lines that are divergently selected for RFI or for a high antibody production, to investigate the modulation of immune parameters in relation to growth and feed efficiency. Our results provide further evidence that long-term selection for the improvement of one trait may have consequences on other important biological functions. Hence, strategies to ensure optimal trade-offs among competing functions will ultimately be required in multi-trait selection programs in livestock.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/genética , Galinhas/genética , Doenças das Aves Domésticas/genética , Seleção Artificial , Animais , Peso Corporal , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Traços de História de Vida , Doenças das Aves Domésticas/imunologia
9.
Pigment Cell Melanoma Res ; 34(6): 1015-1028, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33793042

RESUMO

Color patterns within individual feathers are common in birds but little is known about the genetic mechanisms causing such patterns. Here, we investigate the genetic basis for autosomal barring in chicken, a horizontal striping pattern on individual feathers. Using an informative backcross, we demonstrate that the MC1R locus is strongly associated with this phenotype. A deletion at SOX10, underlying the dark brown phenotype on its own, affects the manifestation of the barring pattern. The coding variant L133Q in MC1R is the most likely causal mutation for autosomal barring in this pedigree. Furthermore, a genetic screen across six different breeds showing different patterning phenotypes revealed that the most striking shared characteristics among these breeds were that they all carried the MC1R alleles Birchen or brown. Our data suggest that the presence of activating MC1R mutations enhancing pigment synthesis is an important mechanism underlying pigmentation patterns on individual feathers in chicken. We propose that MC1R and its antagonist ASIP play a critical role for determining within-feather pigmentation patterns in birds by acting as activator and inhibitor possibly in a Turing reaction-diffusion model.


Assuntos
Alelos , Proteínas Aviárias/genética , Galinhas/genética , Loci Gênicos , Pigmentação/genética , Receptor Tipo 1 de Melanocortina/genética , Animais , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Plumas/metabolismo , Genótipo , Receptor Tipo 1 de Melanocortina/metabolismo
10.
Genet Sel Evol ; 53(1): 24, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33731010

RESUMO

BACKGROUND: The impact of individual genetic and genomic variations on immune responses is an emerging lever investigated in vaccination strategies. In our study, we used genetic and pre-vaccination blood transcriptomic data to study vaccine effectiveness in pigs. RESULTS: A cohort of 182 Large White pigs was vaccinated against Mycoplasma hyopneumoniae (M. hyo) at weaning (28 days of age), with a booster 21 days later. Vaccine response was assessed by measuring seric M. hyo antibodies (Ab) at 0 (vaccination day), 21 (booster day), 28, 35, and 118 days post-vaccination (dpv). Inter-individual variability of M. hyo Ab levels was observed at all time points and the corresponding heritabilities ranged from 0.46 to 0.57. Ab persistence was higher in females than in males. Genome-wide association studies with a 658 K SNP panel revealed two genomic regions associated with variations of M. hyo Ab levels at 21 dpv at positions where immunity-related genes have been mapped, DAB2IP on chromosome 1, and ASAP1, CYRIB and GSDMC on chromosome 4. We studied covariations of Ab responses with the pre-vaccination blood transcriptome obtained by RNA-Seq for a subset of 82 pigs. Weighted gene correlation network and differential expression analyses between pigs that differed in Ab responses highlighted biological functions that were enriched in heme biosynthesis and platelet activation for low response at 21 dpv, innate antiviral immunity and dendritic cells for high response at 28 and 35 dpv, and cell adhesion and extracellular matrix for high response at 118 dpv. Sparse partial least squares discriminant analysis identified 101 genes that efficiently predicted divergent responders at all time points. We found weak negative correlations of M. hyo Ab levels with body weight traits, which revealed a trade-off that needs to be further explored. CONCLUSIONS: We confirmed the influence of the host genetics on vaccine effectiveness to M. hyo and provided evidence that the pre-vaccination blood transcriptome co-varies with the Ab response. Our results highlight that both genetic markers and blood biomarkers could be used as potential predictors of vaccine response levels and more studies are required to assess whether they can be exploited in breeding programs.


Assuntos
Imunogenicidade da Vacina , Pneumonia Suína Micoplasmática/genética , Polimorfismo de Nucleotídeo Único , Suínos/genética , Transcriptoma , Animais , Anticorpos/sangue , Anticorpos/genética , Anticorpos/imunologia , Feminino , Heme/metabolismo , Imunidade Inata , Masculino , Mycoplasma hyopneumoniae/imunologia , Ativação Plaquetária , Pneumonia Suína Micoplasmática/imunologia , Pneumonia Suína Micoplasmática/prevenção & controle , Suínos/imunologia , Vacinação/veterinária
11.
Immunogenetics ; 72(6-7): 367-379, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32839847

RESUMO

This study used a single-nucleotide polymorphism (SNP) panel to characterise the diversity in the major histocompatibility complex B region (MHC-B) in 12 chicken populations in Korea. Samples were genotyped for 96 MHC-B SNPs using an Illumina GoldenGate genotyping assay. The MHC-B SNP haplotypes were predicted using 58 informative SNPs and a coalescence-based Bayesian algorithm implemented by the PHASE program and a manual curation process. In total, 117 haplotypes, including 24 shared and 93 unique haplotypes, were identified. The unique haplotype numbers ranged from 0 in Rhode Island Red to 32 in the Korean native commercial chicken population 2 ("Hanhyup-3ho"). Population and haplotype principal component analysis (PCA) indicated no clear population structure based on the MHC haplotypes. Three haplotype clusters (A, B, C) segregated in these populations highlighted the relationship between the haplotypes in each cluster. The sequences from two clusters (B and C) overlapped, whereas the sequences from the third cluster (A) were very different. Overall, native breeds had high genetic diversity in the MHC-B region compared with the commercial breeds. This highlights their immune capabilities and genetic potential for resistance to many different pathogens.


Assuntos
Galinhas/classificação , Galinhas/genética , Genética Populacional , Haplótipos , Complexo Principal de Histocompatibilidade/genética , Polimorfismo Genético , Animais , Teorema de Bayes , Galinhas/imunologia , Genótipo , República da Coreia
12.
Genet Sel Evol ; 52(1): 34, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590928

RESUMO

BACKGROUND: Pasteurellosis (Pasteurella infection) is one of the most common bacterial infections in rabbits on commercial farms and in laboratory facilities. Curative treatments using antibiotics are only partly efficient, with frequent relapses. Breeding rabbits for improved genetic resistance to pasteurellosis is a sustainable alternative approach. In this study, we infected 964 crossbred rabbits from six sire lines experimentally with Pasteurella multocida. After post-mortem examination and bacteriological analyses, abscess, bacteria, and resistance scores were derived for each rabbit based on the extent of lesions and bacterial dissemination in the body. This is the first study to use such an experimental design and response traits to measure resistance to pasteurellosis in a rabbit population. We investigated the genetic variation of these traits in order to identify potential selection criteria. We also estimated genetic correlations of resistance to pasteurellosis in the experimental population with traits that are under selection in the breeding populations (number of kits born alive and weaning weight). RESULTS: Heritability estimates for the novel response traits, abscess, bacteria, and resistance scores, ranged from 0.08 (± 0.05) to 0.16 (± 0.06). The resistance score showed very strong negative genetic correlation estimates with abscess (- 0.99 ± 0.05) and bacteria scores (- 0.98 ± 0.07). A very high positive genetic correlation of 0.99 ± 0.16 was estimated between abscess and bacteria scores. Estimates of genetic correlations of the resistance score with average daily gain traits for the first and second week after inoculation were 0.98 (± 0.06) and 0.70 (± 0.14), respectively. Estimates of genetic correlations of the disease-related traits with average daily gain pre-inoculation were favorable but with high standard errors. Estimates of genetic and phenotypic correlations of the disease-related traits with commercial selection traits were not significantly different from zero. CONCLUSIONS: Disease response traits are heritable and are highly correlated with each other, but do not show any significant genetic correlations with commercial selection traits. Thus, the prevalence of pasteurellosis could be decreased by selecting more resistant rabbits on any one of the disease response traits with a limited impact on the selection traits, which would allow implementation of a breeding program to improve resistance to pasteurellosis in rabbits.


Assuntos
Cruzamento/métodos , Resistência à Doença/genética , Infecções por Pasteurella/genética , Animais , Peso Corporal/genética , Feminino , Genótipo , Masculino , Pasteurella/genética , Pasteurella/patogenicidade , Fenótipo , Característica Quantitativa Herdável , Coelhos , Desmame
13.
Mol Immunol ; 114: 216-225, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31386978

RESUMO

C-type lectin-like domain containing proteins (CTLDcps) mainly bind carbohydrate-based ligands, but also other ligands. CTLDcps are involved in several biological processes including cell adhesion, cell-cell interactions, and pathogen recognition. Pathogen recognition by myeloid cells, e.g. dendritic cells (DCs), can be facilitated through cell surface expressed CTLDcps. Cell surface expressed CTLDcps have been exploited in vaccine designs for specific targeting of human and mouse DCs using antibodies. In recent years, however, DC targeting using carbohydrate-based vaccines has gained interest due to low production cost, limited immunogenicity, and possibility of multivalent adjustment. In chicken, however, only a few CTLDcps have been identified. Identifying and annotating additional chicken CTLDcps (chCTLDcps) is needed to exploit carbohydrate-mediated DC targeting in chicken. Therefore, we searched the chicken GRCg6a assembly for novel chCTLDcps. We identified 28 chCTLDcps of which 10 had previously been described and also experimentally validated. RNA-seq and RT-qPCR confirmed mRNA expression of the remaining 18 identified chCTLDcps. A group of highly related chCTLDcps, moreover, was shown to be avian-specific and comprise novel members mapped to the proposed chicken natural killer gene complex. Two chCTLDcps, chCLEC17AL-A and chCLEC17AL-B, were found to share a recent common ancestor with CLEC17A. Putative mannose or fucose-binding sequence motifs, EPN and WND, were found in the CTLD of chCLEC17AL-A. Both contained intracellular internalisation and signalling sequence motifs. In conclusion, several chCTLDcps were identified and their expression confirmed. Both chCLEC17AL-A and -B showed promise as potential targets in carbohydrate-based chicken vaccine strategies. Determination of DC-specific expression of chCLEC17AL-A and -B, thus, might prove useful in chicken vaccinology.


Assuntos
Carboidratos/imunologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Vacinas/imunologia , Sequência de Aminoácidos , Animais , Galinhas , Células Dendríticas/imunologia , Feminino , Humanos , Ligantes , Camundongos , Células Mieloides/imunologia
14.
Genet Sel Evol ; 51(1): 12, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30987584

RESUMO

BACKGROUND: In quail, two feather colour phenotypes i.e. fawn-2/beige and yellow are associated with the ASIP locus. The aim of our study was to characterize the structural modifications within this locus that explain the yellow mutation (large deletion) and the fawn-2/beige mutation (assumed to be caused by a different structural modification). RESULTS: For the yellow phenotype, we identified a complex mutation that involves a 141,162-bp long deletion. For the fawn-2/beige phenotype, we identified a 71-kb tandem duplication that comprises one unchanged copy of ASIP and one copy present in the ITCH-ASIP fusion gene, which leads to a transcript coding for a normal ASIP protein. Although this agrees with previous reports that reported an increased level of ASIP transcripts in the skin of mutant animals, we show that in the skin from fawn-2/beige embryos, this level is higher than expected with a simple duplication of the ASIP gene. Thus, we hypothesize that the 5' region of the ITCH-ASIP fusion gene leads to a higher transcription level than the 5' region of the ASIP gene. CONCLUSIONS: We were able to conclude that the fawn-2 and beige phenotypes are caused by the same allele at the ASIP locus. Both of the associated mutations fawn-2/beige and yellow lead to the formation of a fusion gene, which encodes a transcript for the ASIP protein. In both cases, transcription of ASIP depends on the promoter of a different gene, which includes alternative up-regulating sequences. However, we cannot exclude the possibility that the loss of the 5' region of the ASIP gene itself has additional impacts, especially for the fawn-2/beige mutation. In addition, in several other species including mammals, the existence of other dominant gain-of-function structural modifications that are localized upstream of the ASIP coding sequences has been reported, which supports our hypothesis that repressors in the 5' region of ASIP are absent in the fawn-2/beige mutant.


Assuntos
Proteína Agouti Sinalizadora/genética , Pigmentação/genética , Codorniz/genética , Proteína Agouti Sinalizadora/metabolismo , Alelos , Animais , Cor , Éxons/genética , Plumas/metabolismo , Genótipo , Mutação/genética , Fenótipo , Regiões não Traduzidas/genética
15.
Dev Comp Immunol ; 96: 93-102, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30763593

RESUMO

Vaccination programs are implemented in poultry farms to limit outbreaks and spread of infectious bronchitis virus (IBV), which is a substantial economic burden in the poultry industry. Immune correlates, used to predict vaccine efficacy, have proved difficult to find for IBV-vaccine-induced protection. To find correlates of IBV-vaccine-induced protection, hence, we employed a flow cytometric assay to quantify peripheral leucocyte subsets and expression of cell surface markers of six different non-vaccinated and vaccinated Major Histocompatibility Complex (MHC) haplotypes. Non-vaccinated and vaccinated MHC haplotypes presented differential leucocyte composition and IBV viral load. A strong effect of MHC-B, but not vaccination, on several leucocyte subsets resulted in positive correlations with IBV viral load based on MHC haplotype ranking. In addition, a strong effect of MHC-B and vaccination on monocyte MHC-II expression showed that animals with highest monocyte MHC-II expression had weakest vaccine-induced protection. In conclusion, we found several interesting MHC-B related immune correlates of protection and that flow cytometric analysis can be employed to study correlates of IBV-vaccine-induced protection.


Assuntos
Galinhas/virologia , Infecções por Coronavirus/prevenção & controle , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Biomarcadores/sangue , Separação Celular/métodos , Galinhas/imunologia , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Feminino , Citometria de Fluxo/métodos , Haplótipos , Imunogenicidade da Vacina , Leucócitos/imunologia , Leucócitos/metabolismo , Complexo Principal de Histocompatibilidade/imunologia , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia
16.
Pigment Cell Melanoma Res ; 32(3): 381-390, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30457703

RESUMO

The chocolate plumage color in chickens is due to a sex-linked recessive mutation, choc, which dilutes eumelanin pigmentation. Because TYRP1 is sex-linked in chickens, and TYRP1 mutations determine brown coat color in mammals, TYRP1 appeared as the obvious candidate gene for the choc mutation. By combining gene mapping with gene capture, a complete association was identified between the chocolate phenotype and a missense mutation leading to a His214Asn change in the ZnA zinc-binding domain of the protein. A diagnostic test confirmed complete association by screening 428 non-chocolate chickens of various origins. This is the first TYRP1 mutation described in the chicken. Electron microscopy analysis showed that melanosomes were more numerous in feather follicles of chocolate chickens but exhibited an abnormal structure characterized by a granular content and an irregular shape. A similar altered morphology was observed on melanosomes of another TYRP1 mutant in birds, the roux mutation of the quail.


Assuntos
Cor de Cabelo/genética , Melanossomas/patologia , Mutação de Sentido Incorreto , Oxirredutases/genética , Transtornos da Pigmentação/patologia , Pigmentação/genética , Animais , Sequência de Bases , Galinhas , Feminino , Masculino , Melanossomas/genética , Fenótipo , Transtornos da Pigmentação/genética , Homologia de Sequência
17.
PLoS Genet ; 13(4): e1006665, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28388616

RESUMO

Sex-linked barring is a fascinating plumage pattern in chickens recently shown to be associated with two non-coding and two missense mutations affecting the ARF transcript at the CDKN2A tumor suppressor locus. It however remained a mystery whether all four mutations are indeed causative and how they contribute to the barring phenotype. Here, we show that Sex-linked barring is genetically heterogeneous, and that the mutations form three functionally different variant alleles. The B0 allele carries only the two non-coding changes and is associated with the most dilute barring pattern, whereas the B1 and B2 alleles carry both the two non-coding changes and one each of the two missense mutations causing the Sex-linked barring and Sex-linked dilution phenotypes, respectively. The data are consistent with evolution of alleles where the non-coding changes occurred first followed by the two missense mutations that resulted in a phenotype more appealing to humans. We show that one or both of the non-coding changes are cis-regulatory mutations causing a higher CDKN2A expression, whereas the missense mutations reduce the ability of ARF to interact with MDM2. Caspase assays for all genotypes revealed no apoptotic events and our results are consistent with a recent study indicating that the loss of melanocyte progenitors in Sex-linked barring in chicken is caused by premature differentiation and not apoptosis. Our results show that CDKN2A is a major locus driving the differentiation of avian melanocytes in a temporal and spatial manner.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Evolução Molecular , Ligação Genética , Pigmentação/genética , Alelos , Animais , Diferenciação Celular/genética , Galinhas , Plumas/crescimento & desenvolvimento , Plumas/metabolismo , Feminino , Genótipo , Mutação , Fenótipo
18.
Artigo em Inglês | MEDLINE | ID: mdl-27442111

RESUMO

Global transcriptome analysis of chicken whole blood to discover biomarkers of different phenotypes or physiological disorders has never been investigated so far. Whole blood provides significant advantages, allowing large scale and non-invasive sampling. However, generation of gene expression data from the blood of non-mammalian species remains a challenge, notably due to the nucleated red blood cells, hindering the use of well-established protocols. The aim of this study was to analyze the relevance of using whole blood cells (WB) to find biomarkers, instead of Peripheral Blood Mononuclear Cells (PBMC), usually chosen for immune challenges. RNA sources from WB and PBMC was characterized by microarray analysis. Our results show that the quality and quantity of RNA obtained from WB was suitable for further analyses, although the quality was lower than that from PBMC. The transcriptome profiling comparison revealed that the majority of genes were expressed in both WB and PBMC. Hemoglobin subunits were the major transcripts in WB, whereas the most enriched biological process was related to protein catabolic process. Most of the over-represented transcripts in PBMC were implicated in functions specific to thrombocytes, like coagulation and platelet activation, probably due to the large proportion of this nucleated cell type in chicken PBMC. Functions related to B and T cells and to other immune functions were also enriched in the PBMC subset. We conclude that WB is more suitable for large scale immunity oriented studies and other biological processes that have been poorly investigated so far.


Assuntos
Biomarcadores/sangue , Proteínas Sanguíneas/genética , Galinhas/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucócitos Mononucleares/metabolismo , Transcriptoma/genética , Animais , Células Cultivadas , Galinhas/crescimento & desenvolvimento , Biologia Computacional , Genoma/genética , Masculino , Anotação de Sequência Molecular , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Genet Sel Evol ; 48: 1, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26743767

RESUMO

BACKGROUND: The major histocompatibility complex (MHC) is present within the genomes of all jawed vertebrates. MHC genes are especially important in regulating immune responses, but even after over 80 years of research on the MHC, much remains to be learned about how it influences adaptive and innate immune responses. In most species, the MHC is highly polymorphic and polygenic. Strong and highly reproducible associations are established for chicken MHC-B haplotypes in a number of infectious diseases. Here, we report (1) the development of a high-density SNP (single nucleotide polymorphism) panel for MHC-B typing that encompasses a 209,296 bp region in which 45 MHC-B genes are located, (2) how this panel was used to define chicken MHC-B haplotypes within a large number of lines/breeds and (3) the detection of recombinants which contributes to the observed diversity. METHODS: A SNP panel was developed for the MHC-B region between the BG2 and CD1A1 genes. To construct this panel, each SNP was tested in end-point read assays on more than 7500 DNA samples obtained from inbred and commercially used egg-layer lines that carry known and novel MHC-B haplotypes. One hundred and one SNPs were selected for the panel. Additional breeds and experimentally-derived lines, including lines that carry MHC-B recombinant haplotypes, were then genotyped. RESULTS: MHC-B haplotypes based on SNP genotyping were consistent with the MHC-B haplotypes that were assigned previously in experimental lines that carry B2, B5, B12, B13, B15, B19, B21, and B24 haplotypes. SNP genotyping resulted in the identification of 122 MHC-B haplotypes including a number of recombinant haplotypes, which indicate that crossing-over events at multiple locations within the region lead to the production of new MHC-B haplotypes. Furthermore, evidence of gene duplication and deletion was found. CONCLUSIONS: The chicken MHC-B region is highly polymorphic across the surveyed 209-kb region that contains 45 genes. Our results expand the number of identified haplotypes and provide insights into the contribution of recombination events to MHC-B diversity including the identification of recombination hotspots and an estimation of recombination frequency.


Assuntos
Galinhas/genética , Complexo Principal de Histocompatibilidade/genética , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Animais , Haplótipos , Seleção Genética
20.
Genet Sel Evol ; 47: 91, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607727

RESUMO

BACKGROUND: Coccidiosis is the most common and costly disease in the poultry industry and is caused by protozoans of the Eimeria genus. The current control of coccidiosis, based on the use of anticoccidial drugs and vaccination, faces serious obstacles such as drug resistance and the high costs for the development of efficient vaccines, respectively. Therefore, the current control programs must be expanded with complementary approaches such as the use of genetics to improve the host response to Eimeria infections. Recently, we have performed a large-scale challenge study on Cobb500 broilers using E. maxima for which we investigated variability among animals in response to the challenge. As a follow-up to this challenge study, we performed a genome-wide association study (GWAS) to identify genomic regions underlying variability of the measured traits in the response to Eimeria maxima in broilers. Furthermore, we conducted a post-GWAS functional analysis to increase our biological understanding of the underlying response to Eimeria maxima challenge. RESULTS: In total, we identified 22 single nucleotide polymorphisms (SNPs) with q value <0.1 distributed across five chromosomes. The highly significant SNPs were associated with body weight gain (three SNPs on GGA5, one SNP on GGA1 and one SNP on GGA3), plasma coloration measured as optical density at wavelengths in the range 465-510 nm (10 SNPs and all on GGA10) and the percentage of ß2-globulin in blood plasma (15 SNPs on GGA1 and one SNP on GGA2). Biological pathways related to metabolic processes, cell proliferation, and primary innate immune processes were among the most frequent significantly enriched biological pathways. Furthermore, the network-based analysis produced two networks of high confidence, with one centered on large tumor suppressor kinase 1 (LATS1) and 2 (LATS2) and the second involving the myosin heavy chain 6 (MYH6). CONCLUSIONS: We identified several strong candidate genes and genomic regions associated with traits measured in response to Eimeria maxima in broilers. Furthermore, the post-GWAS functional analysis indicates that biological pathways and networks involved in tissue proliferation and repair along with the primary innate immune response may play the most important role during the early stage of Eimeria maxima infection in broilers.


Assuntos
Galinhas/genética , Galinhas/metabolismo , Coccidiose/veterinária , Eimeria , Estudo de Associação Genômica Ampla , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Transdução de Sinais , Algoritmos , Animais , Galinhas/microbiologia , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Modelos Biológicos , Modelos Estatísticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas/microbiologia , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...